
Modeling Causal Error Structures in
Longitudinal Panel Data: A Monte Carlo

Study
Stephen A. Sivo

Center for Assessment and Research Studies
James Madison University

Victor L. Willson
Department of Educational Psychology

Texas A&M University

This research was designed to investigate how much more suitable moving average
(MA) and autoregressive-moving average (ARMA) models are for longitudinal panel
data in which measurement errors correlate than AR, quasi-simplex, and 1-factor
models. The conclusions include (a) when testing for a stochastic process hypothe-
sized to occur in a longitudinal data set, testing for other processes is necessary, be-
cause incorrect models often fit other processes well enough to be deceiving; (b) when
measurement error correlations are flagged to be relatively high in panel data, the fit
and propriety of an MA or ARMA model should be considered and compared to the fit
and propriety of other models; (c) when an MA model is fit to AR data, measurement
error correlations may nonetheless be deceptively high, though fortunately MA
model fit indexes are almost always lower than those for an AR model; and (d) the as-
sumption that longitudinal panel data always contain measurement error correlations
is patently false. In summary, whenever evaluating longitudinal panel data, the fit,
propriety, and parsimony of all 5 models should be considered jointly and compared
before a particular model is endorsed as most suitable.

Although the practice of testing longitudinal panel data for quasi-simplex struc-
tures has grown in the social sciences over the last 20 years, alternative models have
seldom been considered (Marsh, 1993). In response to the dearth of alternative
models examined, Marsh set forth an investigation that offers and tests a competing
model: the one-factor model. Indeed, Marsh went beyond simply testing the
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one-factor model against the traditionally used simplex models. Concerned about
potentially serious limitations in both the simplex and one-factor models in single
indicator form, Marsh, as we have interpreted his article, compared the relative per-
formance of their multiple indicator counterparts as well. The one-factor and sim-
plex multiple indicator models differed in that each item on a test is modeled explic-
itly as a manifest variable. For example, a four-item test administered over six
occasions would give four indicators per occasion.

Both quasi-simplex and one-factor, single-indicator models are used when the
focus of the longitudinal research is on the stability of individual differences over
time. As such, both models are designed to answer “why the true scores represent-
ing the same construct are not perfectly correlated from one occasion to the next”
(Marsh, 1993, p. 158). The quasi-simplex model suggests that each occasion has
its own true score plus some random measurement error; the one-factor model sug-
gests that each occasion shares the same true score plus some random measure-
ment error (much as the classical true score model posits,Xi = Ti + Ei). Both models
are alike in that they assume that measurement errors across occasions are random.
When this assumption is false, neither model suffices, and motive to posit other
models arises.

Indeed, the assumption that measurement errors in longitudinal panel data are
random across occasions often enough proves to be false. Several researchers have
reported that correlated measurement errors in longitudinal panel data are com-
monplace (e.g., Jöreskog, 1979, 1981; Jöreskog & Sörbom 1977, 1989; Marsh,
1993; Marsh & Grayson, 1994; Rogosa, 1979). In fact, Marsh (1993) identified
substantive measurement error correlations in many of his own data sets as a part
of his investigation. Such findings signal the need for alternatives to either the
quasi-simplex or the one-factor, single-indicator models. Marsh’s solution, as we
understand it, was to specify simplex and one-factor models in their multiple indi-
cator form, allowing measurement errors to correlate. Although potentially useful,
other solutions should be entertained as well.

It so happens that models specifying correlated errors already exist. Moreover,
such models belong to the same family of stochastic models to which the
quasi-simplex model belongs. These time series models may prove proper when
measurement errors are found to correlate across occasions in longitudinal panel
data. If such models are sufficient in representing measurement errors that corre-
late in a data set, a multiple indicator counterpart would be unnecessary.1
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1It should be pointed out that Marsh does not necessarily agree with our approach. Previously, in an
article reacting to Marsh and Hau (1996), we recommended the use of time series models for analyzing
longitudinal panel data as an alternative to Marsh’s multiple indicator models (see Sivo & Willson,
1998). Marsh and Hau (1998) had an opportunity to rebut our proposed remedy in the same series. For
more on this topic, seeThe Journal of Experimental Education,Volume 66, Issue 3. The series is entitled
“The Role of Parsimony in Assessing Model Fit in Structural Equation Modeling.”



FITTING TIME SERIES MODELS TO A
LONGITUDINAL PANEL DATA

Broadly, times series data may often be modeled for two distinct stochastic pro-
cesses: autoregressive (AR) and moving average (MA; Box & Jenkins, 1976). AR
models are constructed to allow the current value of a time series to be expressed as
a function of previous values of the same time series:

Xt = φ1 Xt – 1 + φ2 Xt – 2 + ... +φp Xt – p + εt

whereXt denotes an observed score taken on some occasion (t) deviated from the
original levelX0 of the series,ε denotes error associated with a given occasion (t),
andφ denotes a correlation among temporally ordered scores at some lag (e.g.,t – 1
= a lag of 1,t – 2 = a lag of 2). MAmodels are constructed to allow the current value
of a time series to be expressed as a function of autocorrelated errors:

Xt = εt – θ1 εt – 1 – θ2 εt – 2 – ... –θq εt – q

whereXt denotes an observed score taken on some occasion (t) deviated from the
original levelX0 of the series,ε denotes error associated with a given occasion (t),
andθ denotes a correlation among errors at some lag (e.g.,t – 1 = a lag of 1,t – 2 = a
lag of 2). MA models suggest that errors correlate across occasions at some lag. For
example, a lag 1 MA model would have the error for the first occasion correlate
with the second occasion error, and the second occasion error correlate with the
third occasion error. However, the first occasion error would not be correlated with
the third occasion error.

The possibility of both processes being present in the same data lends support
for ARMA models:

Xt = φ1 Xt – 1 + φ2 Xt – 2 + ... +φp Xt – p – θ1 εt – 1 – θ2 εt – 2 – ... –θq εt – q + εt

Hershberger, Corneal, and Molenaar (1994) as well as Hershberger, Molenaar, and
Corneal (1996) provide fairly recent examples of situations in which AR, MA, and
ARMA models may be fit to time series data using structural equation modeling
(SEM).

In an article concerning how to use SEM to test time series models against lon-
gitudinal panel data, Willson (1995b) noted that the basic AR(1) model is but a re-
stricted form of Marsh’s (1993) simplex model. Willson further indicated that
Marsh did not test a model that assumes an MA process, wherein the errors, rather
than the scores, propagate, although he suggested that the errors may possess an
MA structure if a lag 1 autocorrelation among the errors were to be found. Not only
is it plausible to observe whether stochastic MA or ARMA models fit data with
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correlated measurement errors, but it is necessary. Not allowing the errors to corre-
late inflates the association between each manifest variable with its respective la-
tent variable (Marsh, 1993) and greatly inflate Type I error rates for any associated
tests (Box & Jenkins, 1976).

Given that measurement error correlations are often found in longitudinal panel
data, it is surprising that simple MA and ARMA models have not been used as
widely as the quasi-simplex model, especially when all three models belong to the
same general class of stochastic models. Perhaps the reason time series models
specifying correlated errors have not been used is that,

[While] econometricians have concentrated on the linear simultaneous equation
model, in which there are stochastic disturbances in equations (‘shocks’) but not on
measurement errors in variables (‘errors’)[,] … other social scientists—e.g.,
psychometricians and statistical sociologists—have focused their attention on er-
rors-in-variables models in the form of true score theory and factor analysis. (Geraci,
1977, p. 163)

Presumably, “other social scientists” have not focused much attention on stochastic
disturbances. Given the objective of choosing the most parsimonious and the-
ory-driven model, motive for an investigation that demonstrates the applicability of
such time series models exists.

The intention of this study was to determine whether MA or ARMA models fit
two longitudinal data sets previously thought to possess quasi-simplex structures
better than the quasi-simplex, one-factor, or AR models. Three facts motivated this
investigation: (a) Longitudinal data reportedly evidence measurement error corre-
lations so routinely that assuming such correlations is thought advisable, given the
consequences of not doing so (see Jöreskog, 1979, 1981; Jöreskog & Sörbom
1977, 1989; Marsh, 1993; Rogosa, 1979); (b) many previously published longitu-
dinal studies concerning one variable measured over time evaluate only the fit of
simplex and quasi-simplex models, although neither model includes the specifica-
tion of measurement error correlations (Marsh, 1993); and (c) the fit of the
quasi-simplex model to such data sets, in each case, was not compared to rival
models before their endorsement as being suitable probably because, as Marsh ar-
gued, the use of the quasi-simplex model has not been scrutinized sufficiently.

Based on the aforementioned arguments, the following research questions are
posed:

1. Do the quasi-simplex, one-factor, AR, MA, and ARMA models fit their re-
spective, generated data types as well as or better than any of the other five
competing models?

2. Do the MA or ARMA models fit selected longitudinal data sets expected to
possess a quasi-simplex structure with correlated measurement errors as
well as or better than the quasi-simplex, one-factor, or AR models?
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METHOD

Data Description

Five eight-occasion data sets were artificially generated using the SAS RANNOR
function (SAS Institute, 1989) so as to favor the fit of each of the five models under
study: theone-factor,quasi-simplex,AR,MA,andARMA.TheRANNORfunction
generatesanobservationofanormal randomvariablepossessingameanofzeroand
a standard deviation of one. Each data set consisted of 500 cases. Uncorrelated true
score or error processes were chosen to serve as a control condition.

In generating one-factor data, the goal was to produce observations for eight oc-
casionsthatpossessacommonfactor (thesametruescore)plussomedegreeoferror,
independent of occasion. The one-factor data sets were generated to have a reliabil-
ity of .00, .50, .70, or .90 at each occasion. Data possessing a quasi-simplex process
was generated to have observations for eight occasions that possess two related fac-
tors (true scores, different though related) plus some degree of latent error, in addi-
tion to some degree of measurement error (idiosyncratic to occasion). The
quasi-simplex data sets were constructed at .00, .33, .67, or .85 lag parameter value.
Data possessing an AR(1) process was generated to have observations for eight oc-
casions inwhich the firstobservedscorewastheonlyexogenousvariable,havingdi-
rect influence on the second observed score. Eight sets of scores were generated so
that an observed score was a function of a previous score plus a degree of random er-
ror with lag parameter values of .00, .33, .67, or .85. Data possessing an MA(1) pro-
cess had observations for eight occasions in which lag 1 measurement errors were
correlated according to the fixed parameter values .00, .33, .67, or .85. The model
implies that errors are correlated at lag 1. To accomplish this, adjacent errors must
haveauniquerelationship thatdoesnotexistbetweenotherpairs. Inotherwords, for
theMA(1)process,onlyerrorsbelonging tosequentiallyadjacentoccasionsarecor-
related. Thus, a unique error source influences each error at a given occasion, and
that error source serves as that which is correlated with the following error (see Fig-
ure 1). The one-factor component of the MA data was generated to have a .00, .50,
.70, or .90 reliability at each occasion. Finally, the ARMA program was written so
that an observed score was a function of a preceding observed score (AR parameter
values = .00, .33, .67, and .85) plus a random error component and a correlated error
component (MA parameter values = .00, .30, .60, and .80).

For heuristic purposes, two data sets were used for this investigation. Both of
the data sets were selected from previously published research investigating the
quasi-simplex property in longitudinal data: Mukherjee two-hand proficiency
six-wave data (N = 152; cited in Bock & Bargmann, 1966), and Humphreys’
eight-wave college academic success matrix (1968). All of the five models were fit
to the two real data sets. Results obtained for each data set were interpreted in light
of the simulation findings.
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Procedures for the Analysis

All five models (i.e., the quasi-simplex, one-factor, AR, MA, and ARMA; see Fig-
ure 1) were estimated using the MVS mainframe version of SAS Institute’s (1989)
PROC Covariance Analysis of Linear Structural Equations (CALIS) line equa-
tions. For each of the 155 research situations, data were generated and the CALIS
procedure was invoked within a macro set at 200 replications.
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FIGURE 1 Five models tested against the longitudinal data sets.



To successfully complete the following investigation, all five models (i.e., the
quasi-simplex, one-factor, AR, MA, and ARMA) were assessed for adequate fit,
propriety,andparsimony.Todeterminewhetheragivenmodelsufficiently fit adata
set, the values of three fit indexes were examined (the CFI, TLI, and NFI). By con-
vention, a fit index is considered sufficiently high when its value equals or exceeds
.90. Next, the propriety of a solution generated for a model was evaluated according
to several criteria, including the behavior of the parameter estimates and associated
standard errors, model identification, and the iterative estimation procedure’s at-
tainment of successful convergence. Finally, when two or more models both fit well
andattainedpropersolutions, themodelswereevaluatedonthebasisofparsimony.

It should be noted that equality constraints for the models were placed on the er-
rors when testing the fit of the quasi-simplex models to the single indicator data so
as to eliminate indeterminacies (see Jöreskog, & Sörbom, 1989). The first and the
last two errors across time were constrained to be equal.

The line equations option in the CALIS procedure was used to analyze the data in
our investigation.Theone-factorprogramwaswrittenso that thesametruescore for
eachobservationwaspresent in theeightmanifestvariables(withoutconstraints im-
posed) plus an independent error (Appendix A). The quasi-simplex program was
written so that each of the eight manifest variables equaled a true score plus an inde-
pendent measurement error (e.g.,A = T + E1, B = T + E2 …). Following these eight
equations, more equations were written so that the last seven true scores, in order of
occasion, equaled the previous true score plus some latent error (see Appendix B).
The AR program, on the other hand, was written so that the first observed score was
the only exogenous variable, having direct influence on the second observed score
plus some degree of error (see Appendix C). The beta coefficients for all eight occa-
sions were constrained to equal the first beta coefficient in the model. The MA pro-
gram was written so that each of the eight manifest variables equaled the true score
estimated for the first manifest variable (i.e., they were constrained) plus some mea-
surement error. Afterward, the errors were correlated for the first lag (see Appendix
D), and all measurement error correlations were constrained as equal to the correla-
tion between the first and second errors in the series. The ARMA program was writ-
ten in the same manner as the AR program, except the measurement errors were
allowed to correlated at the first lag, with all error correlations constrained to equal
the first error correlation in the series.

RESULTS

Fitting the Five Models to the Simulated Data

In most cases, the models matching the generated data types fit better than any of
the four remaining models; however, often the competing models fit nearly as well
(see Table 1). Supplementary information generated for the analysis had to be con-
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sulted before a decision could be made regarding the distinctions between the mod-
els. Examination of whether the estimator converged to a proper solution was nec-
essary, as well as determining whether parameter estimates were large enough to
justify their inclusion in the model. For example, the fit indexes for all models but
the AR were uniformly high when tested against the one-factor data set, regardless
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TABLE 2
Research Question 1: Summary of Model Fit to Generated Data

Simulated
Data Process Reliability

Lag 1
Parameter

Value
Models Favored by

the Results

One factor .90 No Lag One-factor model
One factor .70 No Lag One-factor model
One factor .50 No Lag One-factor model
Quasi-simplex * .85 Quasi-simplex model
AR * .85 AR model
MA .90 .85 MA model
MA .70 .85 MA model
MA .50 .85 MA model
MA .00 .85 MA model
ARMA * .85/.80 ARMA model
Quasi-simplex * .67 Quasi-simplex model
AR * .67 AR model
MA .90 .67 MA model
MA .70 .67 MA model
MA .50 .67 MA model
MA .00 .67 MA model
ARMA * .67/.60 ARMA model
Quasi-simplex * .33 AR model
AR * .33 AR model
MA .90 .33 MA model
MA .70 .33 MA model
MA .50 .33 MA model
MA .00 .33 MA model
ARMA * .33/.30 ARMA model
Quasi-simplex * .00 No models fit well
AR * .00 Quasi-simplex

(improperly)
MA .90 .00 One-factor model
MA .70 .00 One-factor model
MA .50 .00 One-factor model
MA .00 .00 No models fit well
ARMA * .00/.00 No models fit well

Note. Favored models fulfilled three criteria better than all contending models: fit, propriety, and
parsimony. This table is structured after Table 1. AR = autoregressive; MA = moving average; ARMA =
autoregressive moving average.



of manifest variable reliability. However, closer inspection revealed that the maxi-
mum likelihood estimator did not converge to a proper solution for the quasi-sim-
plex model, as evidenced by two to four negative eigenvalues. At any reliability, all
200 trials with new random data sets gave the same results, though the number of
negative eigenvalues varied slightly. In each case, the maximum likelihood estima-
tor was not able to properly estimate as many parameters, as negative eigenvalues
values were estimated for the latent errors (and not the measurement errors). The
standardized solutions omitted one latent variable’s error for each negative
eigenvalue calculated. The omission of a latent variable’s error, in turn, left the as-
sociated beta pathway with an inflated value.

Unlike the result for the quasi-simplex model, the maximum likelihood estima-
tor did converge to a proper solution for the MA and ARMA models. In fact, the
MA and ARMA models fit the one-factor data fairly well, both attaining indexes
ranging from .970 to 1.011 and .844 to 1.000, respectively. Nonetheless, on re-
viewing other information, both models could be ruled out. For instance, when
comparing the MA model results with the one-factor model results, inspection of
the parameter estimates for the correlated errors is important. Review of the corre-
lations, regardless of the reliability that the process was generated to have, reveals
that the lag 1 relationship among the measurement errors in MA model is not justi-
fiable (e.g., when reliability = .50; see Table 3). Removing the correlations be-
tween the adjacent measurement errors would reduce the model to aconstrained
one-factor model (all lambdas set as equal to the first in the series). In such a situa-
tion, testing the one-factor model (unconstrained) would be a legitimate next step
to determine which model fits the data set best.

Another clue that the MA model is being fit to one-factor data and not MA data
is found when the fit of the one-factor model to MA data is examined. Although
the MA model fit the one-factor data well, the one-factor model almost never fit
the MA data well (see Table 1). The only exception was when the manifest vari-
ables for the MA data possessed a reliability of .90; nevertheless, the LM modifi-
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TABLE 3
Simulated One-Factor Data (Reliability = .50): An MA(1) Model Result

Relationship Lag One Correlation t value

ε2 andε1 .0118 0.619
ε3 andε2 .0119 0.619
ε4 andε3 .0122 0.619
ε5 andε4 .0122 0.619
ε6 andε5 .0131 0.619
ε7 andε6 .0129 0.619
ε8 andε7 .0124 0.619

Note. ε = measurement error. MA = moving average.



cation indexes still suggested freeing the lag 1 paths, and the fit indexes are much
lower than the fit indexes the MA model received. Partial evidence intimating that
an MA process is not in a given data set, despite its high fit indexes, is provided
when the one-factor model fits an unknown data set well at all. Likewise, if the MA
model sufficiently fits an unknown data set well and the one-factor model did not
fit the data set well, one may confidently assert that the data is not one-factor data.

Clearly, the indexes for the ARMA model were often nearly as high as the in-
dexes produced for the one-factor model, and the measurement errors correlations
were remarkably high, but negative (e.g., –.49). Because all of the measurement
error correlations were negative, evidence for an ARMA process may be held sus-
pect, given that all of the covariances in the generated matrix were positive in
value. Furthermore, when the reliability of the manifest variables was either .50 or
.70, the variances of the endogenous variables descend dramatically and uniformly
in value over time (e.g., from .47 to .07 when reliability = .50). This pattern in the
variances of the endogenous variables is unlike the patterns found in the variances
estimated for the ARMA model when fit to ARMA data. When the ARMA model
was fit to ARMA data, regardless of the lagged relationships present in both pro-
cesses, the variances of the endogenous variables were roughly the same across oc-
casions, although the size of the variances depended on the size of the lagged
relationships.

More evidence that the ARMA model is being fit to one-factor data and not
ARMA data is found when the fit of the one-factor model to ARMA data is noted
(see Table 1). As with the fit of the one-factor model to the MA data, the one-factor
model fit the ARMA data exceptionally poorly regardless of the lagged true score
and measurement error relationships (at .33, .67, or .85). Based on the results,
when a one-factor model nearly fits perfectly a given data set (index > .99), the
ARMA model is expected to fit reasonably well (index > .90), although the data set
is devoid of an ARMA process.

Discriminating how well the five models fit the simulated quasi-simplex data
sets (lag 1 parameter values: .00, .33, .67, and .85) was achieved in the same man-
ner (see Table 2). As would be expected, the quasi-simplex model fit the generated
quasi-simplex data well irrespective of lag value (barring the .00 lag 1 parameter,
indicating no process whatsoever). Nonetheless, the quasi-simplex model would
not properly fit the .33 parameter quasi-simplex data for 138 of the 200 replica-
tions, as evidenced by the resultant negative eigenvalues. The CALIS routine indi-
cated that the central parameter matrix (Phi) had two eigenvalues, both associated
with the estimation of the measurement errors.

When the one-factor model was fit to the quasi-simplex data set, regardless of
the first-order lagged relationships of the true scores, the fit indexes were always
low enough to rule it out as one-factor data. Although performing better than the
one-factor model, the MA model nearly always fit the quasi-simplex data
poorly, regardless of the lag coefficient. The estimated correlations between the
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adjacent measurement errors were even suitably high, typically in the .30s. In
fact, the only clear yet effective way to discern the quasi-simplex data from MA
data was to examine how the MA and quasi-simplex models behaved when fit to
MA data. Regardless of the lagged relationship between occasions in the MA
data or the reliability of the scores generated for each occasion, the MA model
received fit indexes at .99 or higher—much higher than the indexes obtained for
the MA model fit to the quasi-simplex data. More telling was the fact that the
quasi-simplex model, when fit to this same MA data set, received negative
eigenvalues associated with the measurement error variances, received inappro-
priately high beta coefficients, or did both. In fact, regardless of how high or low
the lag in the measurement errors, the quasi-simplex model often received many
negative eigenvalues, indicating improper solutions. In other words, the
quasi-simplex model could not be fit to any true MA data set without receiving
an improper solution.

When the fit indexes for the AR and ARMA models were studied, the values
were large enough to suggest a reasonably good fit to the quasi-simplex data (>
.90). Moreover, in both cases the maximum likelihood estimator converged to a
proper solution within an appropriate number of iterations. This was not too sur-
prising given that both models, like the quasi-simplex model, postulate that true
scores are different though related. In part, the quasi-simplex data-generation pro-
cedure favored both the AR and ARMA models, because the quasi-simplex data
was generated so that all adjacent pairs of true scores were correlated to the same
degree. Although the ARMA model fit the quasi-simplex data well, irrespective of
the data’s generated lag, the correlations among the measurement errors estimated
for the model were fairly small and negative. Indeed, the estimated correlations for
the .85 quasi-simplex data were the highest, averaging around –.28 (see Table 4).
This information could suggest that the MA component of the ARMA process was
modest. However, the impropriety of an ARMA model fit to a matrix of solelypos-
itive correlations is evident when all measurement error correlations estimated for
the MA component are negative.
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TABLE 4
Simulated Quasi-Simplex Data With a .85 Lag: An Example of the ARMA Model Fit

Relationship Lag One Correlation t value

ε2 andε1 –.158 –7.350
ε3 andε2 –.165 –7.350
ε4 andε3 –.165 –7.350
ε5 andε4 –.152 –7.350
ε6 andε5 –.163 –7.350
ε7 andε6 –.167 –7.350

Note. ε = measurement error. ARMA = autoregressive moving average.



To further rule out that the data has an ARMA or AR process, observation of
how the quasi-simplex model fits ARMA or AR data is necessary. When the
quasi-simplex model was fit to the ARMA data, irrespective of the lag size for the
MA and AR processes, none of the solutions was proper, and one negative
eigenvalue for each estimated measurement error was received. This result implies
that when both an ARMA and quasi-simplex model fit an unknown data set well,
the possibility that the data possesses an ARMA process is suspect.

When the quasi-simplex model was fit to the generated AR data, irrespective of
the AR lag size, the solutions were improper, the estimated measurement errors re-
ceived smallt values, or both of these occurred. When the quasi-simplex model
was fit to the AR data generated with .33, .67, or .85 lag 1 parameter values, thet
values for all of the measurement errors were lower than .90. Such smallt values
flag the measurement errors for removal. This result is not surprising given that the
AR model may be thought of as a conservative simplex model.

Reviewing the fit of the five models to the simulated AR data sets (lag 1 param-
eter values: .00, .33, .67, and .85) revealed that the one-factor model never re-
ceived a fit index above .809, and, as previously discussed, the quasi-simplex
model fit well, though either improperly or with measurement errors so small that
thet values recommend their omission. The MA model on average received fit in-
dexes less than .90, when the AR data possessed a lag 1 parameter value of .67
or.85. When fit to AR(1) data with a .33 lag, the MA model did receive indexes as
high as .99, although the average value was less than .90 and could turn up as low
as .774. To eliminate the possibility that an MA process exists in a data set, the fit
of the AR model to MA data must be considered. Regardless of the lag present in
the MA data set, the AR model usually fit the MA data set too poorly to suggest the
presence of an AR process (especially when compared to the fit of the MA model).
The AR model’s fit to the MA(1) data with a .33 lag value approached .95 when
the reliability of the generated data was .90. So, if both an MA and AR model fit an
unknown data set very well (>.97), more than likely, the data set does not have an
MA process. This is important to consider given that the measurement error corre-
lations estimated for the MA model fit to the AR data were fairly high for such a
marginally well-fitting model: roughly .44 for the .85 lag 1 AR data, .43 for the .67
lag 1 AR data, and .36 for the .33 lag 1 AR data.

On examining the fit of the five models to the simulated MA data (lag 1 values:
.00, .33, .67, and .85; reliabilities: .00, .50, .70, and .90), the one-factor, quasi-sim-
plex, and AR models were readily identifiable as inferior to the MA model when-
ever the variable reliabilities were .50 or .70. In all but two cases, the AR models
usually fit the MA data poorly: (a) lag 1 = .85 and reliability = .90, and (b) lag 1 =
.33 and reliability = .90. So, whenever the reliability of the manifest variables was
set to .90, the AR model fit the MA data set well (>.90), with fit indexes for the AR
model increasing as the lag in the MA data decreased. Nevertheless, none of the
AR model fit indexes reached higher than .932 when the lag 1 value of the MA data
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was .67 or .85. In fact, only when the lag 1 value of the MA data was .33 and the re-
liability of the data was .90 did the fit indexes reach .95.

The only occasion in which the one-factor model fit indexes reached .90 was
when the reliabilities of the manifest variables were set at .90. In these cases, the fit
indexes obtained were still much smaller than those attained for the MA model.
Moreover, all of the LM modification indices for the lag 1 measurement error cor-
relations suggested freeing the paths (p< .001). The one-factor model, as would be
expected, fit the “MA data” well (in fact, perfectly) when the lag 1 value was .00
and the reliabilities for the manifest variables were .50 or higher.

In all cases, the quasi-simplex model, when fit to MA data, received improper
solutions (negative eigenvalues), fit poorly, or received estimated betas that were
inappropriately high. The only circumstances in which the quasi-simplex model
appeared not to receive an improper solution were (a) when the lag 1 value = .67
and the manifest variable reliability = .90; and (b) whenever the lag 1 value = .33,
regardless of the accorded reliability coefficients. However, even in these cases
the first latent error (Psi) was inappropriately high, and usually the error variances
were estimated as negative values.

Contrasting the fit of the five models to the simulated ARMA data sets
(AR/MA lag values: .00/.00, .33/.30, .67/.60, and .85/.80, respectively) proved to
be fairly straightforward. The quasi-simplex model fit all of the ARMA data sets
well, though improperly attaining as many negative eigenvalues as there were esti-
mated measurement errors. When the one-factor and MA models were fit to any
ARMA data sets, neither of them fit well enough to be considered as serious con-
tenders for the ARMA model. The AR models only fit the ARMA data sufficiently
well when the lag value was set at .85. In this case, the average indexes ranged
from .919 to .963. Nonetheless, the ARMA model was the best fitting model, re-
ceiving fit indexes ranging from .992 to 1.003.

Results for Two Longitudinal Data Sets

Overall, the results of the analyses suggest that both data sets supposed to have
quasi-simplex structures instead may possess an MA. The ARMA model was not
found to be the model of choice for either of the data sets; however, the MA model
did seem to fit better than the contending models.

Mukherjee data set. The maximum likelihood estimator was able to con-
verge within 17 iterations for all models specified to fit the Mukherjee two-hand co-
ordination data set. Nevertheless, improper estimates were obtained for the
quasi-simplex model. Consequently, a negative eigenvalue led the CALIS procedure
to drop constraints, which in turn reduced the information matrix to singularity.
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Investigation of the fit indexes for the one-factor, AR(1), and MA(1) models re-
vealed that the three models fit the data well (see Table 5). In fact, the fit of all three
models to the Mukherjee data was nearly equal. Review of the Lagrange multipli-
ers for both the AR(1) and the one-factor models suggests that the temporally adja-
cent, first-order measurement errors for both models would be substantially
correlated if freed. Indeed, among the Lagrange multipliers generated for the
AR(1) model, the largest pertained to the first-order measurement error correla-
tions, all of which are statistically significant at the .05 level. Similarly, the
Lagrange multipliers generated for the one-factor model were largest for the corre-
lations between the adjacent, lag 1 measurement errors. The only Lagrange multi-
plier perhaps not large enough was specified for the measurement error correlation
between theε4 andε3 (LM = 3.031;p = 0.082). Although such evidence was suffi-
cient to suggest retaining open paths between the measurement errors in the
one-factor model, the same needed to be demonstrated for the MA(1) model,
which, although assuming one-factor is present in the data, constrains as equal all
lambda paths to the first lambda path in the model. A model that constrains all
lambda paths equal to the first lambda path without allowing for correlated mea-
surement errors is a constrained one-factor model. When fit to the data, the
Lagrange multipliers were still very high. Although the Lagrange multipliers be-
longing to the 2 one-factor models differed, the pathways between the first-order
lag measurement errors for both models were related enough to suggest the inclu-
sion of the correlated errors in the model.

Examination of the correlations between the measurement errors in the MA(1)
model reveals that the values are fairly large and may need to be considered for in-
clusion in a specified model (see Table 6). The variation shared by the paired lag 1
errors ranges from 6% to 10%. Although small in absolute terms, such shared vari-
ation is large enough to justify specification of the measurement error correlations.

The ARMA(1) did fit much better than the MA(1) model. In fact, the ARMA(1)
model fit much better than any of the other models yielding proper solutions. Nev-
ertheless, the correlated errors were improperly negative (ranging from –.34 to
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TABLE 5
Fit Indexes for Models Tested Against Mukherjee Two-Hand Coordination Data

Model TLI NFI CFI χ2 df

One-factor 0.9119 0.9414 0.9471 83.677 9
Qsimplex 1.0039 0.9973 1.0000 3.793 6
AR(1) 0.9302 0.9258 0.9349 105.997 14
MA(1) 0.9343 0.9346 0.9431 93.426 13
MA(2) 0.9510 0.9528 0.9608 67.445 12
ARMA(1) 1.0013 0.9920 1.0000 11.424 13

Note. TLI (NNFI) = Tucker–Lewis Index; NFI = normed fit index; CFI = comparative fit index.



–.46), because the Mukherjee covariance matrix did not possess any negative
covariances.

Humphrey data set. When the models were fit to the Humphrey eight-se-
mester GPA data, the maximum likelihood estimator converged within six itera-
tions for all models. The worst-fitting models were the AR(1) and one-factor
models, attaining indexes ranging from .7751 to .7831 and .8973 to .9266, respec-
tively (see Table 7). The ARMA(1) model, conversely, fit well, though the mea-
surement error correlations were negative despite the fact that all correlations in
the data matrix were positive. The quasi-simplex and MA models fit much better
than all the other models, with the fit statistic differences among the quasi-sim-
plex and MA(3) model being minuscule. The fit indexes for the quasi-simplex
model ranged from .997 to .998. Review of thet values for the measurement error
variances (ranging from 13.133 to 17.229) suggested the necessity of including
them in the model. Review of the parameters and standard errors revealed that all
were within proper limits. However, the same was not true for the latent factor er-
rors. Two of thet values for the latent errors were at 0.669 and 1.746, suggesting,
overall, that their specifications were unsupported. Clearly, thet values for the la-
tent errors were not nearly as large as those for the measurement errors, a few be-
ing only moderately high (see Table 8). Although the quasi-simplex model fit
properly and well, a few of the latent errors specified for the model were too small
(t values 0.669, and 1.746), suggesting its insufficiency in depicting the dynamic
present in the data.

Although the MA models fit the data well according to the fit statistics, the cor-
related errors were not very high for the highest lag freed (see Table 9). Even when
all three lags were specified in the MA model, the lag 2 and 3 correlations were .24
or less. Moreover, the measurement error correlations did not increase much in
magnitude as lags were added to the analysis. In fact, the highest lag of any MA(2)
or MA(3) model consisted of correlations that were too small.
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TABLE 6
Mukherjee Data: Examination of Lag for MA(1) Model

Relation Parameter Lag One Correlation

ε2 andε1 theta 21 0.248
ε3 andε2 theta 32 0.293
ε4 andε3 theta 43 0.266
ε5 andε4 theta 54 0.274
ε6 andε5 theta 65 0.306
Covariance (t value) 30.329 (6.328)

Note. ε = measurement error.



DISCUSSION

Willson (1995a) warned that consulting test statistics when interpreting the results
of an analysis “may mislead users by [the] blind assumption that the best fit pre-
sented in a computer package is all that is going on in a set of data, or that no other
solutions can occur that give comparable results” (p. 9).
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TABLE 7
Fit Indexes for Models Tested against Humphrey Semester GPA Data

Model TLI NFI CFI χ2 df

One-factor 0.8973 0.9230 0.9266 376.70 20
Q-Simplex 0.9966 0.9951 0.9982 23.91 15
AR(1) 0.7751 0.7788 0.7831 1081.30 27
MA(1) 0.9723 0.9691 0.9743 150.98 26
MA(2) 0.9844 0.9810 0.9861 92.77 25
MA(3) 0.9895 0.9861 0.9910 67.93 24
ARMA(1) 0.9394 0.9388 0.9438 229.39 26

Note. TLI (NNFI) = Tucker–Lewis index; NFI = normed fit index; CFI = comparative fit index; AR
= autoregressive; MA = moving average; ARMA = autoregressive moving average.

TABLE 8
Humphreys Semester GPA: Variances of Exogenous Variables

Variable Parameter Estimate
Standard

Error t value

ε1 V ε1 0.431053 0.025018 17.229
ε2 V ε1 0.431053 0.025018 17.229
ε3 V ε2 0.425679 0.023143 18.393
ε4 V ε3 0.437627 0.021998 19.894
ε5 V ε4 0.416501 0.021740 19.158
ε6 V ε5 0.419283 0.021917 19.130
ε7 V ε6 0.392270 0.024017 16.333
ε8 V ε6 0.392270 0.024017 16.333
ζ1 V ζ1 0.568947 0.043321 13.133
ζ2 V ζ2 0.025602 0.038262 0.669
ζ3 V ζ3 0.171226 0.020170 8.489
ζ4 V ζ4 0.034043 0.019501 1.746
ζ5 V ζ5 0.119142 0.018347 6.494
ζ6 V ζ6 0.072751 0.018637 3.904
ζ7 V ζ7 0.099911 0.021696 4.605
ζ8 V ζ8 0.126137 0.035424 3.561

Note. ε = measurement error;ζ = latent factor error.



Analysis of the Simulated Data

Analysis of the simulated data provided a means for identifying which factors were
most important. Knowing which factors to attend helped in establishing guidelines
necessary for identifying the dynamic occurring in the data. This was quite useful
because, with some analyses, determining whether a proper and well-fitting model
really captures the true dynamic present in the data may seem difficult. For in-
stance, when the MA(1) model was fit to the AR data set with a .85 lag 1 value, the
model not only fit well enough, but also achieved measurement error correlations
large enough to suggest that an MA process was present in the data (roughly .44).
To safeguard against making such a mistake, more than one stochastic model
should be fit to the data set in question. Although one model alone may potentially
fit more than one kind of data set well, examining how all five models perform
when fit to an unknown data set can lead to an understanding of what dynamic is
truly present in the data. For instance, when an MA model fits an unknown data set
well, with moderately small measurement error correlations (>.30), a systematic
plan involving model comparison may be undertaken to secure that the data set
does not really contain an AR process. One consideration is that, although an
MA(1) model may fit a .85 lag 1 value AR data set fairly well, the AR(1) model fit
the data set much better. Moreover, the AR model did not fit an MA data set well
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TABLE 9
Humphreys GPA Data: Correlation among the Measurement Errors

Relationship MA(1) MA(2) MA(3)

Lag One
ε2 andε1 .155 .197 .226
ε3 andε2 .157 .197 .224
ε4 andε3 .163 .203 .229
ε5 andε4 .164 .205 .230
ε6 andε5 .165 .206 .233
ε7 andε6 .165 .207 .234
ε8 andε7 .157 .201 .229

Covariance (t value) 0.091 (14.761) 0.118 (15.158) 0.139 (14.811)

Lag Two
ε3 andε1 Constrained .086 .125
ε4 andε2 Constrained .083 .120
ε5 andε3 Constrained .087 .125
ε6 andε4 Constrained .086 .125
ε7 andε5 Constrained .088 .126
ε8 andε6 Constrained .084 .123

Covariance (t value) 0.050 (7.316) 0.075 (8.660)

Note. MA = moving average;ε = measurement error.



unless the reliability of the manifest variables was set to .90. Even when the reliabil-
ities of the manifest variables were set to .90, the AR model barely fit well enough
in comparison to the MA model.

Another example in which model comparison may prove to be helpful is when
MA models fit .33 AR/.30 MA lag 1 value ARMA data sets nearly as well as the
ARMA models. To determine whether a data set has an .33/.30 ARMA process
when an MA model fits the data well, a researcher would simply have to fit an
ARMA model to the data set. Although an MA model sometimes fits the .33/.30
ARMA data set well, the ARMA model does not fit the .33 MA lag 1 data set well.

To tell whether a data set has one factor instead of a stochastic process, four cri-
teria may be used. First, the one-factor model must fit the data set well enough.
This criterion is often sufficient enough given that one-factor models rarely fit
other data sets well enough to be considered. The second criterion involves testing
the quasi-simplex model to the unknown data. If the model yields negative
eigenvalues associated with latent errors, the data set may be a one-factor data set
(given that the first criterion was met). Third, an MA model, although fitting well,
should receive estimated measurement error correlations near zero. Finally, an
ARMA model should receive negative measurement error correlations.

Under certain conditions any one of the four inappropriate models fit the MA
data, especially when the MA lag 1 value was low (.33) and the reliabilities of the
manifest variables were high (.90). In such cases, certain findings may be consid-
ered to establish that the data are MA. To rule out a one-factor model, the measure-
ment error correlations for the MA model should be examined. If the measurement
error correlations are not near zero, the one-factor model does not fit better than the
MA model, and the Lagrange multipliers generated for the one-factor model sug-
gest opening paths between lag 1 errors, then the data may not be a one-factor
model and may have an MA process. If the ARMA model receives negative mea-
surement error correlations, despite the fact that the matrix analyzed has only posi-
tive covariances, then the data may not be ARMA. If the quasi-simplex model fits
no better than the MA model and the one-factor model fits sufficiently well, then
the data do not possess a quasi-simplex process, especially if the standard errors
for the quasi-simplex parameter estimates are too large. Clearly, if the quasi-sim-
plex model does not reach a proper solution, the data are probably not quasi-sim-
plex. Finally, if the MA model fits better than an otherwise sufficiently fitting AR
model and the one-factor model also fits sufficiently well, the data are not likely to
possess an AR process and the data may possess an MA process.

Two Longitudinal Data Sets

Regarding the Mukherjee data, the best-fitting, substantively defensible model for
which the estimator reached a proper solution was the MA model. Although the
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one-factor model fit satisfactorily according to fit indexes, the Lagrange multipli-
ers (modification indexes) produced for the model strongly identified the paths be-
tween the lag 1 measurement errors and only those paths as possibly warranting
specification (probability values being less than .01). Further refuting evidence in-
timating that the data set simply holds one-factor was the performance of the
one-factor model fit to the simulated one-factor data. Four findings contraindicate
the data simply possessing one-factor. First, Lagrange multipliers for the one-fac-
tor model, when fit to the simulated factor data, never implied that many or all adja-
cent errors were correlated at a lag, regardless of the size of the reliabilities for the
manifest variables (i.e., .50, .70, .90). Second, analysis of the simulated factor data
revealed that, although the MA(1) model fit the one-factor data fairly well, the esti-
mated measurement error correlations were near zero (roughly, –.02, regardless of
reliability sizes). Conversely, measurement error correlations estimated for the
MA(1) model fit to the Mukherjee data ranged from .25 to .31. Third, fit indexes for
the AR model when fit to the simulated one-factor data never reached higher than
.847 and went as low as .496, depending on the reliabilities for the manifest vari-
ables. Yet, when the AR(1) model was fit to the Mukherjee data, the model received
fit indexes no lower than .93. Finally, the one-factor model did fit the simulated MA
data well when the lag 1 value for the process was around .33 and the reliabilities
were around .90. Indeed, the measurement error correlations for the MA(1) model
fit to the Mukherjee data ranged from .25 to .31 and the reliability indexes were
around .90.

As already mentioned, the AR(1) model fit the Mukherjee data well. To rule out
evidence supporting an AR process, the fit of the one-factor model to the data is
sufficient. According to the results acquired for the AR simulated data, the
one-factor model fit very poorly, regardless of the lag values (.33, .67, .85). The
highest index value received by the one-factor model fit to the AR data was .809, a
value attained only when the lag 1 value was set to .85. Compared to this finding,
the one-factor model, fit to the Mukherjee data, received fit indexes (ranging from
.91 to .95) uncharacteristically high for an AR data set.

Neither the quasi-simplex model nor the ARMA(1) model properly fit the
Mukherjee data. The quasi-simplex model received an improper solution (one
negative eigenvalue), and the ARMA(1) model received negative measurement
error correlations, atypical when all covariance values in a data matrix are positive.
When the results obtained for .33 lag 1 value and .90 reliability MA simulated data
were reviewed, the ARMA model was found to receive negative measurement er-
ror correlations around –.22 and fit indexes going as high as .95. These results sim-
ulate those found for the ARMA(1) model fit to the Mukherjee data.

Regarding the Humphrey GPA data, the best fitting and substantively plausible
model was the MA model. The AR(1) model fit poorly, and the one-factor model,
although fitting sufficiently well, fit more poorly than the contenders. The
quasi-simplex model fit properly and well, although a few of the latent errors spec-

198 SIVO AND WILLSON



ified for the model were too small (t values 0.669, and 1.746), suggesting its insuf-
ficiency in depicting the dynamic present in the data.

Fit indexes representing the MA(1) model fit to the Humphrey GPA data were
no lower than .97, with estimated measurement error correlations ranging from .15
to .17 (t values = 14.761). Such correlations are small though large enough to con-
tribute to a constrained one-factor model. When the simulated MA data results
possessing a .33 lag 1 value (the smallest lag value generated for MA data) with ei-
ther .70 or .90 reliabilities were consulted, the quasi-simplex model was found oc-
casionally to fit properly and well (fit values ranging from .94 to .97). Moreover,
the estimated quasi-simplex latent errors were low for both MA data sets, with
roughly half of thet values nearing 2.00. These results are similar to those obtained
for the quasi-simplex model fit to the Humphrey GPA data (in which reliabilities
near .70).

Recommendations

1. When evaluating longitudinal data, all five models should be used. There
are two reasons for this recommendation. First, sometimes two or more models fit
the same data set well. Armed with the knowledge of when this occurs and what to
examine, one may be better able to discern the process in the data. Second, the
performance of rival stochastic models may be consulted to accumulate evidence
in favor of the stochastic model hypothesized to fit the data. The fit, propriety, and
parsimony of a hypothesized stochastic model to rival stochastic models must be
examined.

2. The base of possible, yet plausible models for longitudinal data should be ex-
panded. Five models have been suggested as possible descriptors of the dynamic
occurring in a longitudinal data set. Indeed, there may be more tenable models than
those identified in this research.
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APPENDIX A

ONE-FACTOR CALIS PROGRAM

Note: These commands invoke the CALIS procedure, indicating that the matrix to
be analyzed is a covariance matrix (COV), that Lagrange Multipliers are wanted as
a part of the output (MOD), and that all statistical results are wanted as well (ALL).

PROC CALIS COV MOD ALL;
TITLE ‘ONE-FACTOR MODEL’;

Note: The line equations subcommand is used so that each manifest variable (Xi) is
defined and a single true score (F1) is specified in the model along with the inde-
pendent errors.

LINEQS
X1 = LX11 F1+E1,
X2 = LX21 F1+E2,
X3 = LX31 F1+E3,
X4 = LX41 F1+E4,
X5 = LX51 F1+E5,
X6 = LX61 F1+E6,
X7 = LX71 F1+E7,
X8 = LX81 F1+E8;

Note: The STD subcommand is used to specify which variances are parameters to
estimate.

STD
E1-E8=VE1-VE8, F1=1;

Note: The VAR subcommand lists the numeric variables that will be analyzed.

VAR
X1 X2 X3 X4 X5 X6 X7 X8;
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APPENDIX B

QUASI-SIMPLEX CALIS PROGRAM

Note: These commands invoke the CALIS procedure, indicating that the matrix to
be analyzed is a covariance matrix (COV), that Lagrange Multipliers are wanted as
a part of the output (MOD), and that all statistical results are wanted as well (ALL).

PROC CALIS COV MOD ALL
TITLE ‘QUASI-SIMPLEX MODEL’;

Note: The line equations subcommand is used so that each manifest variable (Xi) is
defined and the eight true scores (F1–F8) is specified in the model as related to its
temporally adjacent true score.

LINEQS
X1 = 1.0 F1+E1,
X2 = 1.0 F2+E2,
X3 = 1.0 F3+E3,
X4 = 1.0 F4+E4,
X5 = 1.0 F5+E5,
X6 = 1.0 F6+E6,
X7 = 1.0 F7+E7,
X8 = 1.0 F8+E8,

F1 = D1,
F2 = BETA1 F1+D2,
F3 = BETA2 F2+D3,
F4 = BETA3 F3+D4,
F5 = BETA4 F4+D5,
F6 = BETA5 F5+D6,
F7 = BETA6 F6+D7,
F8 = BETA7 F7+D8;

Note: The STD subcommand is used to specify which variances are parameters to
estimate. Note that the parameter estimated for Error 1 is the same as that for Error
2, and the parameter estimated for Error 7 is the same as that for Error 8. This was
done to treat the two indeterminacies otherwise present in the model.

STD
E1-E8=VE1 VE1-VE6 VE6, D1-D8=PSI1-PSI8;

Note: The VAR subcommand lists the numeric variables that will be analyzed.
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VAR
X1 X2 X3 X4 X5 X6 X7 X8;

APPENDIX C

AR CALIS PROGRAM

Note: These commands invoke the CALIS procedure, indicating that the matrix to
be analyzed is a covariance matrix (COV), that Lagrange Multipliers are wanted as
a part of the output (MOD), and that all statistical results are wanted as well (ALL).

PROC CALIS COV MOD ALL
TITLE ‘AR MODEL’;

Note: The line equations subcommand is used so that each variable (Xi) is specified
in the model as related to its temporally adjacent variable.

LINEQS
X2 = BETA1 X1+E1,
X3 = BETA1 X2+E2,
X4 = BETA1 X3+E3,
X5 = BETA1 X4+E4,
X6 = BETA1 X5+E5,
X7 = BETA1 X6+E6,
X8 = BETA1 X7+E7;

Note: The STD subcommand is used to specify which variances are parameters to
estimate. Note that the parameter estimated for Error 1 is the same as that for Error
2, and the parameter estimated for Error 7 is the same as that for Error 8. This was
done to treat the two indeterminacies otherwise present in the model.

STD
E1-E7=VE1-VE7;

Note: The VAR subcommand lists the numeric variables that will be analyzed.

VAR
X1 X2 X3 X4 X5 X6 X7 X8;
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APPENDIX D

MA CALIS PROGRAM

Note: These commands invoke the CALIS procedure, indicating that the matrix to
be analyzed is a covariance matrix (COV), that Lagrange Multipliers are wanted as
a part of the output (MOD), and that all statistical results are wanted as well (ALL).

PROC CALIS COV MOD ALL;
TITLE ‘MOVING-AVERAGE MODEL’;

Note: The line equations subcommand is used so that each manifest variable (Xi) is
defined and a single true score (F1) is specified in the model along with the errors
soon to be specified as related.

LINEQS
X1 = LX11 F1+E1,
X2 = LX11 F1+E2,
X3 = LX11 F1+E3,
X4 = LX11 F1+E4,
X5 = LX11 F1+E5,
X6 = LX11 F1+E6,
X7 = LX11 F1+E7,
X8 = LX11 F1+E8;

Note: The COV subcommand, in this example, specifies lag 1 measurement error
correlations in the model. Observe that the measurement error correlations are con-
strained to equal the first correlation in the series.

COV E1 E2=THE12,E2 E3=THE12,E3 E4=THE12,E4 E5=THE12,
E5 E6=THE12,E6 E7=THE12,E7 E8=THE12;

Note: The STD subcommand is used to specify which variances are parameters to
estimate.

STD
E1-E8=VE1-VE8, F1=1;

Note: The VAR subcommand lists the numeric variables that will be analyzed.

VAR
X1 X2 X3 X4 X5 X6 X7 X8;
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APPENDIX E

ARMA CALIS PROGRAM

Note: These commands invoke the CALIS procedure, indicating that the matrix to
be analyzed is a covariance matrix (COV), that Lagrange Multipliers are wanted as
a part of the output (MOD), and that all statistical results are wanted as well (ALL).

PROC CALIS COV MOD ALL
TITLE ‘ARMA MODEL’;

Note: The line equations subcommand is used so that each variable (Xi) is specified
in the model as related to its temporally adjacent variable.

LINEQS
X2 = BETA1 X1+E1,
X3 = BETA1 X2+E2,
X4 = BETA1 X3+E3,
X5 = BETA1 X4+E4,
X6 = BETA1 X5+E5,
X7 = BETA1 X6+E6,
X8 = BETA1 X7+E7;

Note: The COV subcommand, in this example, specifies lag 1 measurement error
correlations in the model. Observe that the measurement error correlations are con-
strained to equal the first correlation in the series.

COV E1 E2=THE12, E2 E3=THE12, E3 E4=THE12, E4 E5=THE12,
E5 E6=THE12, E6 E7=THE12;

Note: The STD subcommand is used to specify which variances are parameters to
estimate. Note that the parameter estimated for Error 1 is the same as that for Error
2, and the parameter estimated for Error 7 is the same as that for Error 8. This was
done to treat the two indeterminacies otherwise present in the model.

STD
E1-E7=VE1-VE7;

Note: The VAR subcommand lists the numeric variables that will be analyzed.

VAR
X1 X2 X3 X4 X5 X6 X7 X8;
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